Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 168715, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38008330

RESUMEN

Water contamination caused by heavy metals, nutrients, and organic pollutants of varying particle sizes originating from domestic and industrial processes poses a significant global challenge. There is a growing concern, particularly regarding the presence of heavy metals in freshwater sources, as they can be toxic even at low concentrations, posing risks to human health and the environment. Currently, membrane technologies are recognized as effective and practical for treating domestic and industrial wastewater. However, these technologies are hindered by fouling issues. Furthermore, the utilization of conventional membranes leads to the accumulation of non-recyclable synthetic polymers, commonly used in their production, resulting in adverse environmental consequences. In light of our previously published studies on environmentally friendly, biodegradable polylactic acid (PLA) nanocomposite mixed matrix membranes (MMMs), we selected two top-performing PLA-based ultrafiltration nanocomposite membranes: one negatively charged (PLA-M-) and one positively charged (PLA-M+). We integrated these membranes into systems with varying arrangements to control fouling and eliminate heavy metals, organic pollutants, and nutrients from raw municipal wastewater collected by the local wastewater treatment plant in Abu Dhabi (UAE). The performance of two integrated systems (i.e., PLA-M+/PLA-M- and PLA-M-/PLA-M+) was compared in terms of permeate flux, contaminant removal efficiencies, and fouling mitigation. The PLA-M+/PLA-M- system achieved removal efficiencies of 79.6 %, 92.6 %, 88.7 %, 85.2 %, 98.9 %, 94 %, 83.3 %, and 98.3 % for chemical oxygen demand (COD), nitrate (NO3--N), phosphate (PO43--P), ammonium (NH4+-N), iron (Fe), zinc (Zn), nickel (Ni), and copper (Cu), respectively. On the other hand, the PLA-M-/PLA-M+ system recorded removal efficiencies of 85.8 %, 95.9 %, 100 %, 81.9 %, 99.3 %, 91.9 %, 72.9 %, and 98.9 % for COD, NO3--N, PO43--P, NH4+-N, Fe, Zn, Ni, and Cu, respectively. Notably, the PLA-M-/PLA-M+ system demonstrated superior antifouling resistance, making it the preferred integrated system. These findings demonstrate the potential of eco-friendly PLA nanocomposite UF-MMMs as a promising alternative to petroleum-based polymeric membranes for efficient and sustainable wastewater treatment.

2.
Sci Total Environ ; 824: 153869, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35176376

RESUMEN

Polylactides are a prominent class of biocompatible and biodegradable polymers that can be used to fabricate membranes for wastewater treatment. Excessive nutrient (phosphorus and nitrogen) concentrations in water bodies are a serious concern that has resulted in widespread health problems and potable water shortages. In this study, ultrafiltration (UF) membranes were prepared from polylactic acid (PLA) using the phase inversion method. Scanning electron microscope (SEM), thermogravimetric analyzer (TGA), and Fourier-transform infrared (FTIR) analysis were used to characterize the membranes. The hydrophilicity of the membrane surface was investigated by analyzing the water contact angle (CA). The results showed that the PLA membranes had a finger-like asymmetric morphology and various dense pore sizes. When the concentration of the PLA polymer increased from 15% to 20%, the removal of ammonium­nitrogen (NH4+-N) increased from 41.9 ± 1.3% to 95.9 ± 3.1% and from 50% to 87% for synthetic and raw wastewater samples, respectively. Up to 52% removal rates of phosphates (PO43--P) were achieved using PLA membranes. This study revealed a great opportunity to develop green, efficient, and sustainable PLA membranes for the treatment of wastewater with high nutrient content.


Asunto(s)
Agua Potable , Ultrafiltración , Membranas Artificiales , Nitrógeno , Nutrientes , Poliésteres , Ultrafiltración/métodos , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...